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We study the reaction dynamics of active particles that are advected passively by 2D incompressible open
flows, whose motion is nonhyperbolic. This nonhyperbolicity is associated with the presence of persistent
vortices near the wake, wherein fluid is trapped. We show that the fractal equilibrium distribution of the
reactants is described by aneffective dimension def f, which is a finite resolution approximation to the fractal
dimension. Furthermore,def f depends on the resolutione and on the reaction rate 1/t. As t is increased, the
equilibrium distribution goes through a series of transitions where the effective dimension increases abruptly.
These transitions are determined by the complex structure of Cantori surrounding the Kolmogorov-Arnold-
Moser (KAM ) islands.
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I. BACKGROUND AND MOTIVATION

In this paper we study the dynamics of active processes
taking place in a nonstationary open(unbounded) two-
dimensional flow. A well-known example is the plane flow
incident on a cylindrical obstacle, which is one of the para-
digms in fluid mechanics. By “active process” we mean
chemical reactions or biological processes, for example. The
idea is that particles are advected by the flow and, at the
same time, undergo changes due to some internal(intrinsic)
dynamics—chemical transformations or biological reproduc-
tion, for instance. Instead of talking about particles, one can
also describe this process in terms of advected concentration
fields of the substances involved. In this case, the dynamics
is given by a partial differential equation on the concentra-
tions, coupled to the velocity field of the flow(anadvection-
reaction-diffusion equation). Either way, the overall dynam-
ics of the reactive system depends strongly on the underlying
advection dynamics of the flow. In most interesting situa-
tions, open flows involving obstacles are expected to gener-
ate a chaotic Lagrangian transient dynamics[1]. This means
that the motion of a fluid particle typically displays very long
transients, during which the motion is chaotic. This is a phe-
nomenon known as chaotic scattering, and it is a generic
feature of open flows with obstacles. Chaotic scattering in
the flow with a cylindrical obstacle has also been observed
experimentally[2]. The question of how this chaotic dynam-
ics affects the reaction dynamics unfolding in the flow has
been addressed by a number of previous works[3–5], and
many important results have been derived on the relation
between the parameters characterizing chaos and the dynam-
ics of the reaction. However, these results have all been ob-
tained by making the assumption that the flow’s chaos is of
the simplest kind, namelyhyperbolic. This means that the
flow is assumed to be unstable everywhere. It is known,
however, that many(maybe most) flows found experimen-
tally are nonhyperbolic, showing stable regions which corre-
spond to the presence of trapped vortices. The previous

theory does not encompass this more general kind of flow.
The aim of this work is to address this issue. We will see that
there are many new phenomena due to nonhyperbolicity hav-
ing no counterpart in hyperbolic flows. The moral is that
nonhyperbolicity cannot be neglected if one wants to under-
stand the dynamics of real flows.

The dynamics of chemical and biological activity taking
place in nonstationary flows is of great importance in many
areas of fundamental and applied science. Two illustrative
examples are the series of complex chemical reactions in-
volved in the depletion of the Earth’s ozone layer, and the
population dynamics of plankton in the oceans. In these pro-
cesses, the intrinsic dynamics of the reactive process is
coupled to the dynamics of the fluid by the fact that the
reacting substances(chemicals or micro-organisms, for ex-
ample) are being carried along with the flow. In many cases,
the reactants can be consideredpassive, meaning that their
velocity at a given point is always equal to the velocity of the
flow at that point. In other words, their inertia is negligible.
If, furthermore, the reactants are present in low concentra-
tions, and if their reactions do not involve too much heat
production, it is usually a good approximation to consider
that they do not affect the flow significantly. With these ap-
proximations, the reaction dynamics is described by an
advection-reaction-diffusion equation, which is a partial dif-
ferential equation for the reactants’ concentrations involving
explicitly the fluid velocity fieldu.

A particularly important class of reaction is that ofauto-
catalytic reactions[6,7], of particular importance to biology
[8]. The simplest kind of autocatalytic reaction corresponds
to the spontaneous growth of the reactant due to a chain
reaction, such as the spreading of a flame, or the growth of a
population of micro-organisms by self-replication. A simple
model for this process is the advection-reaction-diffusion
equation[9]

]c

]t
+ u · = c = fscd + k¹2c. s1d

Here,c denotes the concentration of the autocatalytic reac-
tant,k is the diffusivity, andu=usr ,td is the flow’s velocity*Email address: amoura@if.usp.br
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field, which is determined from the Navier-Stokes equation,
with the appropriate boundary conditions. The intrinsic dy-
namics of the reaction is determined byfscd, which is usu-
ally a nonlinear function ofc.

Sincec does not affect the flow dynamics, in this work we
consider that the(usually hard) task of solving the Navier-
Stokes equation is done, and that the velocity fieldusr ,td is
given. We are interested here in how a nonstationary flowu
affects the overall dynamics of the reaction. We make the
simplifying assumption that the flow can be considered two-
dimensional (2D), u=(uxsx,y,td ,uysx,y,td). This can be
physically justified by the fact that in many important cases
this is a good approximation. For example, the large-scale
dynamics of the atmosphere and the oceans is approximately
2D, because(among other things) of the stratification caused
by the Earth’s rotation. Furthermore, in most situations the
fluid velocities are much smaller than the speed of sound. In
this case, we have a 2D incompressible(viscous) flow. As is
well known [10], this kind of flow can be described by
means of a stream functionc=csx,y,td, in terms of which
the velocity field is given by ux=]csx,y,td /]y;uy

=−]csx,y,td /]x. As a result of the assumption of negligible
inertia, the trajectorysxstd ,ystdd of a particle of reactant is
the same as that of a fluid particle

ẋ = ]csx,y,td/]y; ẏ = − ]csx,y,td/]x. s2d

The pair of equations(2) has a Hamiltonian structure,
with the stream functionc playing the role of the Hamil-
tonian, whilex is the coordinate andy is its associated “mo-
mentum.” The dynamics of a particle passively carried by the
flow is thus equivalent to the dynamics of a generally time-
dependent one-degree-of-freedom Hamiltonian system, with
a phase space corresponding to thesx,yd physical space. We
know that, since the “Hamiltonian”c is time dependent, in
general the(Lagrangian) dynamics is chaotic. This can be so
even for very simple time dependencies. For example, cha-
otic motion generally ensues ifc is time periodic with some
periodT, csx,y,td=csx,y,t+Td.

In this work, we consideropenflows, such as the para-
digmatic channel flow with a cylindrical obstacle. In open
flows, there are unbounded trajectories, corresponding to
particles that come from the upstream region, stay in the
wake for a while, and then leave downstream. We notice that
even flows which are in reality confined can be considered
open if the time it takes for a typical particle to return near
the obstacle is much greater than the other relevant time
scales. Thus, we can consider the flow of the ocean around
an isolated island as an open flow, even though the ocean as
a whole is of course bounded. Such 2D open flows model
important environmental flows in the atmosphere and in the
ocean[11,12].

Equations(2) describe ascatteringdynamics. There is a
bounded region in space, near the wake, in which the dynam-
ics of fluid particles is nontrivial. This is theinteraction re-
gion, or mixing region. Outside this region, the velocity field
is (approximately) stationary, and the particles follow simple
trajectories. Typically, an advected particle comes from the
upstream region, enters the mixing region, moves around in

there in a possibly complicated trajectory, and finally leaves
towards the downstream region. This transient dynamics is
chaotic if the scattering process is very sensitive to initial
conditions. Thus, small changes in(for example) the position
of the particle before entering the mixing region can affect
the final state of the particle tremendously after scattering
(that is, after leaving the mixing region). This phenomenon is
calledchaotic scattering, and it is very common in dynami-
cal systems with transients[13,14]. The stream function of
typical open flows is likely to display chaotic scattering.

Chaotic scattering is associated with the presence in the
mixing region of a highly complex set of nonescaping orbits,
the chaotic saddle. This set is composed of orbits that never
leave the mixing region, fort→` and t→−`. The chaotic
saddle is a fractal set in phase space, with nonsmooth struc-
ture on arbitrarily small scales. Thestable and unstable
manifoldsof the chaotic saddle are the sets of initial condi-
tions which tend to the chaotic saddle ast→` and t→−`,
respectively. Initial conditions on the stable manifold never
leave the mixing region after having entered it, and corre-
spond to orbits with a diverging escape time. Because phase
space is contracted by time evolution along the stable mani-
fold, and expanded along the unstable manifold, advected
particles leave the mixing region near the unstable manifold.
Therefore, an open set of initial conditions(corresponding
physically to a cloud of advected particles) traces out the
unstable manifold after being scattered. The fractal structure
of these sets is thus directly observable, and their fractal
dimension is a quantitative measure of the sensitivity of the
dynamics to the initial conditions.

The simplest nontrivial flow dynamics is for a periodic
time dependence ofc, with csx,y,td=csx,y,t+Td, whereT
is the period. In this case, the dynamics of an advected par-
ticle can be described by a stroboscopic two-dimensional
discrete mapM given by

Msx,yd = sxT,yTd, s3d

where sxT,yTd is the position of the particle given by the
forward integration of Eqs.(2) for a time intervalT, for an
initial condition sx0,y0d=sx,yd. Time periodicity arises natu-
rally in open flows. In the case of a cylindrical obstacle, the
flow becomes periodic above a critical Reynolds numberRc,
at which the steady regime becomes unstable. Although the
details may vary, the loss of stability of the steady flow to a
periodic flow is a very common phenomenon in open flows,
so our theory has a wide range of applicability. Given that
the flow is periodic, the reduction of the dynamics to the map
M in (3) is completely general for two-dimensional incom-
pressible(viscous) flows. We note thatM preserves the area,
and is thus asymplecticmap.

The simplest kind of chaotic scattering ishyperbolic. In
the hyperbolic case, all orbits in the chaotic saddle are un-
stable, meaning that initial conditions starting arbitrarily
close to one of these orbits lead to trajectories that separate
exponentially from it, eventually escaping the mixing region.
The hyperbolic assumption simplifies the analysis consider-
ably, but it excludes the possibility of stable(elliptic) orbits,
which are generic for Hamiltonian systems(and symplectic
maps). The dynamics of chemical reactions and other active
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processes has been extensively investigated in chaotic open
flows, under the assumption that the chaotic saddle is hyper-
bolic [3,4]. In the case of autocatalytic reactions, after a tran-
sient time, the reacting particles settle down to an equilib-
rium distribution in space which is concentrated around the
unstable manifold of the chaotic saddle. The equilibrium dis-
tribution can be regarded as a fattened-up version of the un-
stable manifold, with an average thickness which depends on
the reaction rate and on the advection dynamics(see Sec. II
for details). In particular, the observed fractal dimension of
the reactants is the same as the dimension of the unstable
manifold. Moreover, the fractal structure of the chaotic
saddle accelerates the reaction and acts as a dynamic cata-
lyst, due to the large surface-volume ratio of the equilibrium
distribution, which is a result of its fractal structure. This
dynamical catalysis manifests itself as a singular production
term in the equation for the reaction rate. Some examples of
issues that can be studied within this framework are the
depletion of ozone in the polar stratosphere[15], plankton
population dynamics on the sea surface[16], and even the
origin of life [17].

All the results mentioned above have been obtained for
the case when the dynamics of the advected particles is hy-
perbolic. However, in general Hamiltonian systems are non-
hyperbolic, having stable(elliptic) periodic orbits which are
surrounded by Kolmogorov-Arnold-Moser(KAM ) tori of
quasiperiodic orbits, making upKAM islandsin phase space.
No orbit starting from the outside can enter a KAM island,
and the fluid in one island never leaves. In fluid mechanical
terms, the KAM islands correspond to trapping vortices in
the flow. Such vortices are very common in 2D flows, and
they have been observed in environmental flows, such as in
the atmosphere(the stratospheric polar vortex, which plays a
crucial role in the process of ozone depletion[11]), and also
in ocean circulation[12]. In this article, we study the dynam-
ics of reactions when the advection dynamics of the particles
is nonhyperbolic. We shall see that striking new effects take
place because of nonhyperbolicity, and since, as we men-
tioned above, many important flows are expected to be non-
hyperbolic, we expect our results to be relevant for under-
standing realistic systems.

The rest of this paper is organized as follows. We first
investigate the importance of diffusion in the reaction dy-
namics, and derive the condition under which it can be ne-
glected(Sec. II). We show that in most cases we can neglect
diffusion, and consider only advection(along with the reac-
tion itself). We apply our condition to the Fischer autocata-
lytic reaction, as an example. Next(Sec. III), we introduce a
simple 2D symplectic map we use throughout the paper, and
we review briefly the relevant concepts about the phase-
space structure of nonhyperbolic Hamiltonian systems. In
Sec. IV, we introduce the concept of and define what we call
the effective fractal dimension def fsed for a general Hamil-
tonian system, which can in particular be applied to 2D in-
compressible flows. Here,def f is an approximation of the
fractal dimensiond of the stable(and unstable) manifold of
the chaotic saddle of an open system, for a finite resolutione.
We show thatdef f is a very important quantity for nonhyper-
bolic systems in general, and in particular for 2D flows with
vortices. It turns out that the effective dimensiondef f is of

fundamental importance for understanding the dynamics of
reactions taking place in these flows. For a finite lower scale
e, def f is equal tod in the limit ase→0. For nonhyperbolic
systems, it is known thatd=dph, wheredph is the phase-space
dimension[18] (in our cased=2). In nonhyperbolic systems,
the convergence ofdef f to d=dph ase→0 is very slow, and
we show thatdef fsed is the relevant physical quantity for a
finite resolutione. We further show thatdef f depends not
only on the minimum scalee, but also on the location in
phase space. This dependence arises because of the presence
of a complex structure of Cantori surrounding the KAM is-
lands. In Sec. V, we investigate the consequences of these
results for the dynamics of reactions taking place in the flow.
We argue that, since the reaction introduces naturally a lower
scalee in the dynamics, the observed dimension of the fila-
mentary structure of the equilibrium distribution of the par-
ticles isdef fsed, and not the true fractal dimensiond=2. The
reaction also introduces a new time scalet in the dynamics,
given by the inverse of the reaction rate. We show that, as a
consequence, the observed dimension of the particles’ equi-
librium distribution depends ont. As t is increased, the equi-
librium distribution undergoes a series of metamorphoses
where the observed dimension increases. We test our theory
with a particular system and with a particular kind of reac-
tion (catalysis), but our results are valid in general. These
results show that the nonhyperbolic dynamics results in a
reaction dynamics that is fundamentally different from the
hyperbolic case.

II. REACTION AND DIFFUSION

In this section we define our reaction model, and we in-
vestigate the influence of the diffusion, and under what con-
ditions it can be neglected[27].

From now on, we will consider only autocatalytic reac-
tions. A particularly simple autocatalytic reaction is de-
scribed by a single(suitably normalized) scalar concentration
field c=csr ,td. We assume that the intrinsic chemical dynam-
ics is such thatc has two equilibrium values, one of them
being stable and the other one being unstable. Without loss
of generality, we takec=0 to be the unstable value, andc
=1 to be the stable one. Consider now a stationary fluidsu
=0d, with initially csr ,0d=0 throughout the fluid. If we in-
troduce a localized “chemical perturbation” by makingc
Þ0 in some region,c will clearly tend to the stable value 1
in that region. If there is a spatial coupling, such as the La-
placian term in Eq.(1), the concentration in neighboring
points will also move towards 1. As a result, the initial per-
turbation will propagate, and will end up changing all the
fluid to c=1 (if it is at rest). If the time scale of the reaction
is fast enough, there is an abrupt boundary between the
stablesc<1d and unstablesc<0d regions, with only a neg-
ligible region with intermediate values ofc. In other words,
the stable regions “invade” the unstable regions, much like
an infection, in a well-defined front, similar to a shock front.
This reaction front propagates with a constant velocityv
which depends on properties of the fluid and on details of the
reaction.
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A very important example of an autocatalytic reaction of
this type is given by Fischer’s reaction-diffusion equation
[8,19,20]

]c

]t
= kcs1 − cd + D¹2c, s4d

wherek is the reaction rate, andD is the diffusivity ofc. This
equation is valid for a stationary flow. Without the diffusion
term, Eq.(4) is just the logistic(Verhulst) growth equation.
The Fischer equation is then seen to be the model for a
“population” which grows locally by the familiar logistic
law, and is coupled spatially by diffusion. Equation(4) is the
simplest possible generalization of the logistic growth model
to include spatial effects. It has been extensively studied due
to its importance in biology, and it has been shown that its
reaction front velocity is given by

v = 2ÎkD. s5d

We now ask what happens when the flow is nonstationary,
and moreover when the flow is open. In this case, it is no
longer true that the stable “phase”c=1 will invade the whole
space, as there is competition between the spreading caused
by the reaction and the escape caused by advection of the
fluid to the downstream region. Rigorously, the dynamics is
then given by Eq.(1), with fscd=kcs1−cd. However, we can
use the existence of a well-defined reaction front to avoid
considering explicitly the convective term in Eq.(1). As the
flow moves, both the stable and unstable regions, as well as
the boundary separating them, are advected. The boundary is
the reaction front, which is spreading from the stable to the
unstable regions with velocityv, while, at the same time, it is
advected by the flow by Eqs.(2). Hence, the velocity of each
point of the front is a result of the composition of the local
flow velocity and the intrinsic front velocityv, directed along
the normal to the front line(remember, our flow is 2D).
Advection tends to concentrate the particles near the unstable
manifold of the chaotic saddle, as we mentioned before.
From this we can expect the stable region(c close to 1) of
the open time-dependent flow to be concentrated on thin
strips around the fractal unstable manifold. If there were no
reaction, the width of each strip would contract at a mean
rate given by the Lyapunov exponenth (since the flow is
Hamiltonian, its positive and negative Lyapunov exponents
are equal in modulus), and the total area of the stable region
would go to zero, as a result of the escape of flow to the
downstream region. The tendency of the front to spread
counteracts this shrinking(see Fig. 1).

To model this dynamics, we first consider the simple case
without diffusion. Letestd be the average width of the strips
containing the stable region. Advection tries to shrinke ex-
ponentially, while reaction tries to expand it with a constant
speedv. The time-evolution equation fore is then

ė = − he + 2v, s6d

where the factor 2 comes from the fact that on each strip the
reaction acts ontwo fronts. In equilibrium, we haveė=0,
which using Eq.(6) gives us the equilibrium valuee*

e * = 2v/h. s7d

We now consider the effect of a diffusionD on the above
considerations. For a purely diffusive dynamics(without ei-
ther advection or reaction), each strip would spread ase
=2Î2Dt, starting from an infinitesimally thin strip. This time
evolution arises from the equation

ė =
2D

e
. s8d

Of course, this description of the effect of diffusion as an
increase ofe given by Eq.(8) is a simplification of the real
process. In reality, diffusion causes a continuous spreading of
an initial distribution, without sharp boundaries. To simplify
our analysis, however, we will continue to work with the
strip width e, which is sensible ifD is not too large.

Adding Eq.(8) to the right-hand side of Eq.(6), we find
the equation for time evolution of the mean strip width due
to advection, reaction, and diffusion

ė = − he +
2D

e
+ 2v. s9d

The equilibrium conditionė=0 gives a quadratic equation
for the stationary widthe*. Only the positive solution is
physically meaningful

e * =
v
h

+ÎSv
h
D2

+
2D

h
. s10d

From Eq. (10), we see that the effect of diffusion on the
equilibrium width of the strips can be neglected if the second
term in the square root is much smaller than the first one,
which yields the condition

2Dh ! v2. s11d

This condition involves the parameters characterizing the ad-
vectionshd, the reactionsvd, and the diffusionsDd. If (11) is

FIG. 1. Schematic illustration of the hierarchical structure of
KAM islands and cantori, generic in nonhyperbolic flows. Solid
circles represent KAM islands, and cantori are represented by
circles with “gaps.”
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satisfied, we can forget about the diffusion, and only consider
the advection and the reaction.

In general,v depends onD. In the case of Fischer’s equa-
tion (4), we can use the expression(5) for the front velocity.
The condition(11) then becomes

h ! 2k. s12d

Surprisingly,D dropped out of the condition. Physically, this
happens because the reaction front spreads diffusively in this
model, as can be seen by inspecting Eq.(4). Since 1/k gives
the time scale of the reaction, Eq.(12) implies that(for the
Fischer autocatalytic process) diffusion can be safely ne-
glected if the reaction time scale is much shorter than the
time scale of separation of nearby trajectories(given by
1/h).

In what follows, we shall assume that condition(11) [or
(12)] is satisfied, and so we do not have to take the diffusion
into account. This is known to be true for many important
applications, such as the dynamics of the depletion of the
ozone layer and the plankton population dynamics.

III. ADVECTION, KAM ISLANDS, CANTORI

We are interested in studying the reaction dynamics in
nonhyperbolic flows. We showed in Sec. I that if the flow is
time periodic, the advection dynamics is reduced to a
discrete-time 2D area-preserving mapM, given by Eq.(3).
Since the flows we are interested in are open,M has un-
bounded orbits which go to infinity ast→`. The dynamics
of M can be either hyperbolic or nonhyperbolic. In the

former case, all orbits comprising the chaotic saddle are un-
stable, and the set of nonescaping orbits has null measure
(volume). This is the case studied in previous works[3,4]. If
the flow is nonhyperbolic, besides the unstable orbits, there
are also elliptic orbits with purely imaginary eigenvalues.
These orbits are surrounded by KAM islands, complex struc-
tures of tori made of quasiperiodic orbits separated by open
regions of chaotic motion(“chaotic seas”). Large KAM is-
lands are surrounded by smaller “satellite” islands, which are
themselves accompanied by even smaller islands, and so on
infinitely. This hierarchical structure of KAM islands, ex-
tending through arbitrarily small scales, is depicted in Fig. 1.
Besides the islands, there is also a hierarchical structure of
Cantori, which are invariant sets with a fractal distribution of
gaps(see Fig. 2). One may think of a cantorus as an invariant
torus riddled with holes(in a fractal way). Contrary to the
invariant tori, particles can cross from one side of a cantorus
to the other, although this may take a long time. Cantori act
thus as transport barriers. For example, points started in re-
gion R2 in Fig. 2 take on average much longer to escape than
those started in regionR1, and those started in regionR3 take
even longer to escape, and so on.

Because of the presence of this structure of KAM islands
and cantori, the phase space of nonhyperbolic systems is
much more complex than their hyperbolic counterparts, and
we shall see that this has important consequences for the
reaction dynamics.

From the theory of 2D symplectic maps(Birkhoff’s theo-
rem and KAM theory) [21] we know that, although the de-
tails may change from system to system,the overall phase-

FIG. 2. (a) Orbits of the map(13) for l=6. The inset shows a magnification of a small region. Complex structures of stable orbits and
Cantori can be seen.(b) Equilibrium distribution forl=6 and t=1; (c) same as(b), with t=50; (d) same as(b), with t=200. The
magnification in the inset shows the filamentation of the region lying between the two KAM islands.
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space structure shown in Fig.1 is completely general, and
shows up in any nonhyperbolic map(and therefore in their
associated 2D incompressible flows as well) [21]. This uni-
versality allows us to choose a particularly simple nonhyper-
bolic map as an example, since the results will hold in gen-
eral. One of the simplest 2D symplectic nonhyperbolic with
escapes is[23]

H xn+1 = lfxn − sxn + ynd2/4g,

yn+1 = l−1fyn + sxn + ynd2/4g,
J s13d

wherel is a real parameter. The map(13) has an open dy-
namics, with trajectories coming from infinity, and being
scattered towards infinity again after a transient time. Forl
&6.5, the map is nonhyperbolic[18]. We fix l=6 throughout
this paper. In Fig. 2(a), we show the Poincaré section for this
system, found by plotting many iterations of a few initial
conditions. There is a stable period-2 orbit, which is the cen-
ter of a KAM island composed of two pieces. This KAM
island is surrounded by a cantorus, which can be seen by the
long time it takes for a particle in its interior to escape, as
made evident by the outermost orbit, shown in the figure as a
cloud of points surrounding the islands. Orbits initialized
within the cantorus have an average escape time much larger
than those initialized outside it. There are smaller cantori
embedded within the big one, corresponding to even larger
escape times, and so on, in a hierarchical structure similar to
that of the KAM islands themselves[glimpses of this “fine
structure” can be seen in the inset of Fig. 2(a)]. We stress
again that, although we are looking at the particular case of
map(13) for convenience, this self-similar structure of KAM
islands and cantori is a general feature of any nonhyperbolic
Hamiltonian system.

IV. THE EFFECTIVE FRACTAL DIMENSION

We now introduce the basic concept of effective dimen-
sion for the pure(nonreactive) dynamics[22]. In open cha-
otic systems, the stable(and unstable) manifold of the invari-
ant set is fractal, with the(box-counting) fractal dimensiond
defined by the limitd=lim«→0ln Ns«d / lns«−1d, whereNs«d is
the number of boxes of sizee needed to cover the unstable
(or stable) manifold [24,25]. Since for« sufficiently small
Ns«d is in most cases a power law, this is equivalent to the
limit of the following derivative:

dph − d = lim
e→0

d ln fsed
d ln e

, s14d

wherefs«d is the fraction of boxes of size« needed to cover
the fractal set(compared with the total number,e−dph). In
generald satisfiesdph−1ødødph. For nonhyperbolic sys-
tems, it is known thatd always assumes the maximum value
d=dph (dph=2, in our case). The limit (14), however, con-
verges very slowly and is only attained forverysmall values
of e. In fact, in nonhyperbolic systems, a log-log plot offsed
versus« is typically, to a very good approximation, a straight
line with a nonzero slope over an« range of many orders of
magnitude, even though from Eq.(14), the slope is zero for
«→0. The slope in fact does approach zero for« small

enough. But, if for some physical reason one has a finite
resolutione (given, for instance, by the size of the advected
particle, or by the resolution of our viewing apparatus), the
dimension that is effectively seen is given by the effective
dimensiondef f, defined as an approximation tod for finite e

2 − def fsed = Ud ln fse * d
d ln e*

U
e*=e

. s15d

We havedph=2 in our case. Obviously,def f depends on the
minimum scalee, and satisfiesdef fs«d→2 as«→0 [26].

A most important property of the effective dimension is
the following: for nonhyperbolic systems,def f depends not
only one, but also on the location in phase space. This is due
to the presence of cantori in phase space, which act as trans-
port barriers: particles inside a cantorus take a much longer
time to escape than those that start outside it. This means that
the piece of the chaotic saddle’s stable manifold that is
within the cantorus is more stretched and folded than on the
outside. At finite resolution, its filamentation appears more
involved and, as a result, the effective dimension in the inner
region should be higher than in the outer region. We test this
idea in the system(13), using the uncertainty method[24] to
calculatefsed, and Eq.(15) to find the effective dimension.
We first calculatedef f outside the cantorus, and we finddef f
=1.54 [Fig. 3(a), circles]. Inside the first cantorus, we find a
considerably greater valuedef f=1.91[Fig. 3(b), circles]. This
shows thatdef f indeed depends on the location in phase
space, and is greater inside a cantorus. We have also verified
this result for other systems. There is, however, an infinite
number of cantori, organized hierarchically around the KAM
islands. As we go deeper and deeper within the cantori struc-
ture, the typical escape time increases, and so doesdef f. In
fact, we were able to find regions in system(13) whose ef-
fective dimension is numerically indistinguishable from 2.
We point out that, even though in this work we focus mainly
on the chemical dynamics, this is a general result, valid for
any Hamiltonian system with two degrees of freedom.

V. NONHYPERBOLIC REACTION DYNAMICS

The consequences of the above findings for the reactive
dynamics are many and fundamentally relevant. We use au-
tocatalytic reactions as an example, but we expect many of
our results to apply more broadly. In order to numerically
implement reactions in this system, we perform a discretiza-
tion of space and time, following Ref.[3]. We initially
choose a rectangular regionR such that all the KAM islands
and cantori are contained in it(that is,R covers the mixing
region). We then partition thex–y plane inton2 rectangular
cells, corresponding to the division of thex and they axes
into n equal segments. A given particle in an arbitrary posi-
tion in R is considered to be located in the center of the
corresponding cell. When a particle evolves in time through
(13), this particle is mapped to another cell. If the mapping
takes a particle outside the allowed regionR, it escapes, and
is discarded in the simulation. After advection, the particles
undergo the reaction. We assume that all particles undergo a
catalytic reaction, which acts as an infection: if a given cell
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contains a particle before the reaction, all surrounding cells
will also contain particles after the reaction. If an infected
cell already has a particle, it remains unaltered. This is a
coarse-grained approximation of the reaction front propaga-
tion, discussed in Sec. II. The complete dynamics of the
system is thus composed of advection and reaction. This is
clearly a discrete version of an autocatalytic process(1),
where both space and time are discretized. We assume that
condition(11) is satisfied, so that we do not have to concern
ourselves with diffusion. To fully define the dynamics, we
define thereaction timet, which is the number of times we
iterate the map(13) before applying the reaction. The reac-
tion rate is given by 1/t. The parameters in this discrete
system are related to the reaction front velocityv by v
=s /t, wheres is the size of a cell. To recover the continu-
ous dynamics, we go to the limitn→`, s→0, t→0, with
s /t=v kept constant.

Using the above procedure, we simulate numerically the
advection-reaction dynamics. We initially fixt=1. After an
initial transient time, we find that the space distribution of
the reacting particles settles down to an equilibrium that is
independent of the initial conditions(except for those that
lead to the empty equilibrium, corresponding to all particles
escaping after a finite time). The equilibrium distribution is
plotted in Fig. 2(b). This distribution represents a dynamical
equilibrium, when particles are produced by the reaction at
the same rate with which they escape through advection.

The equilibrium distribution of Fig. 2(b) is made up of
two components: a bulky componentB, which includes the
region corresponding to the KAM islands and the outermost

cantorus[compare with Fig. 2(a)], and a filamentary compo-
nentF, surroundingB [see Fig. 2(b)]. The existence ofB is
due to the presence of the KAM islands: if a particle is ad-
vected sufficiently near the boundary of an island, during the
“infection” phase of the dynamics, one of the produced par-
ticles may be inside the island, and then, as the dynamics
progresses, the whole island ends up being taken over by the
particles. In fact, not only the islands are taken over, but, in
our case, also their surrounding cantori. Although particles
from within the cantori can escape, their typical escape time
is much larger than the reaction timet=1 of Fig. 2(b). As a
result, the number of particles inside the cantori increases
faster than the loss caused by escape, and the cantorus seen
in Fig. 2(a) becomes one single massive concentration of
particles, where every cell is occupied, as shown in Fig. 2(b).
In the case of a hyperbolic dynamics, there is no bulky re-
gion B. This is an important difference between the hyper-
bolic and nonhyperbolic cases.

For hyperbolic dynamics, the equilibrium distribution has
a fractal structure(down to the grid size), with an observed
fractal dimensiondob equal to the dimensiond of the un-
stable set in the underlying Hamiltonian dynamics[3]. No-
tice that the reaction introduces a minimum lengthe=s,
wheres is the grid size. This suggests that, for nonhyper-
bolic systems, the filamentary partF of the distribution must
have an observed dimensiondob equal to the effective dimen-
sion def fsed (with « equal to the grid size), and notd. We
have calculated the box-counting dimension of the distribu-
tion shown in Fig. 2(b), after excluding the bulky compo-
nent. This is shown in Fig. 3(c) (squares). We have obtained

FIG. 3. (a) fsed outside the cantorus; the slope givesdef f=1.54±0.01.(b) fsed inside the first cantorus;def f=1.915±0.003.(c) Number of
reacting particles in the filamentary component of the equilibrium distribution as a function of the inverse of the grid size, fort=1; the slope
gives directlydob=1.53±0.01.(d) Same as(c), with t=200; dob=1.92±0.03.
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dob=1.53±0.01, which is to within numerical error equal to
def f=1.54, calculated previously for the region outside the
first cantorus.

From the fact thatdef f depends on the location in phase
space, we might expect the measured dimensiondob of the
equilibrium distribution to also depend on the location in the
same way asdef f, and to assume a greater value inside the
cantorus. However, we have to take the reaction timet into
account: ift is smaller than the typical escape timete inside
the cantorus, empty cells created by escape will be immedi-
ately infected by neighboring particles, and the interior of the
cantorus will always be a homogeneous block of particles,
such as seen in Fig. 2(b). In this case, the effective dimension
def f of this inner region does not manifest itself. If, on the
other hand,t* te, the reaction is not able to fill all the holes,
and the distribution within a region of the cantorus becomes
filamentary, with an observed dimension equal todef f. At the
same time, since the escape time outside the cantorus is
much smaller than inside, the equilibrium distribution out-
side the cantorus is depleted to almost nonexistence. From
the above, we conclude that fort, te, the equilibrium distri-
bution undergoes a structural transition, with regions that
were formerly in the “bulky” zone becoming filamentary,
and the observed dimension changing to a larger value. Be-
cause of the hierarchical organization of the cantori, this
transition happens for an infinite number of values oft, each
transition corresponding to inner cantori, with larger escape
times. In terms of the continuous dynamics, a region is ex-
pected to be bulky ifv!L / te, whereL is a characteristic
(macroscopic) size. An increase int means a decrease in the
reaction front velocityv.

To test our theory, we simulate the system’s dynamics for
increasing values oft. The result fort=50 andt=200 can
be seen in Figs. 2(c) and 2(d). As t is increased, the region
outside the cantorus is depleted, and above a critical valuetc,
part of the region within the cantorus is “breached,” and
becomes filamentary[Fig. 2(d)]. Comparing Fig. 2(d) and
Fig. 2(b), the former’s structure does look more involved,
suggesting a larger observed dimension. A box-counting cal-

culation of dob confirms this[see Fig. 3(d)], and gives the
resultdob=1.92, in excellent agreement withdef f=1.91, cal-
culated previously for the nonreactive dynamics. Thus, our
theory is supported by the simulations. Increasingt further,
we should in principle see other transitions, but the numeri-
cal limitations does not allow us to resolve them.

We note that for arbitrarily larget, nonhyperbolic systems
always have a nonempty equilibrium distribution, because
the KAM islands correspond tote=`. This is another differ-
ence with hyperbolic systems, which always have a critical
value of t above which the system empties(the so-called
emptying transition[3]).

VI. FINAL REMARKS

Summarizing our results, we have found that the dynam-
ics of nonhyperbolic incompressible-flow advection-reaction
systems is qualitatively very different from that of hyperbolic
systems. In particular, the structure and observed dimension
of the equilibrium distribution of reacting particles depend
on both the lower length scale and on the reaction rate. The
equilibrium distribution undergoes an infinite number of
structural transitions ast is increased(and v decreased),
which are due to the presence of nested cantori in phase
space. As a final remark, we note that if many reactions take
place simultaneously in a flow(this is the case in the atmo-
sphere, for instance), they may see different effective dimen-
sions, depending on the values of the front velocityv (or, in
the discrete dynamics,t). Since different dimensions imply
different production rates(see Ref.[3]), the dependence of
def f on location may have important consequences for the
production rates of competing chemical reactions(or biologi-
cal processes).
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